
Dr.DSK III CSE----DAA UNIT-IV THE GREEDY METHOD Page 1

Design and Analysis of Algorithms

UNIT-IV::THE GREEDY METHOD

Greedy Method:General Method, Applications- Job sequencing with dead lines, 0/1 knapsack

problem, minimum cost spanning trees, single source shortest path problem.

--------------------------------*

Divide and conquer technique is applicable only for problems, which can be divisible. There

exist some problems which cannot be divisible.

In divide and conquer approach, a problem is divided recursively into sub problems of same

kind as the original problem, until they are small enough to be solved and finally the

solutions of the sub problems are combined to get the solution of the original problem. In

Greedy approach, a problem is solved by determining a subset to satisfy some constraints. If

that subset satisfies the given constraints, then it is called as feasible solution, which

maximizes or minimizes a given objective function. A feasible solution that either

maximizes or minimizes an objective function is called as optimal solution.

Most of the problems have n inputs and require us to obtaining a subset that satisfies some

constraints. Any subset that satisfies these constraints is called a feasible solution. We need to

find a feasible solution that either maximizes or minimizes a given objective function. A

feasible solution that does this is called an optimal solution.

The greedy method suggests that one can devise an algorithm that works in stages,

considering one input at a time. At each stage, a decision is made regarding whether a

particular input is in an optimal solution. This is done by considering the inputs in an order

determined by some selection procedure.

Example 1) Let us find the maximum value for the following problem. Given objective

function is Z = 3x + 4y subjected to 0 <= x <= 1

 -1 <= y <= 1

Assume input set as (x,y)

{(0, -1), (0, 0), (0, 1), (1, -1), (1, 0), (1, 1), (2, 2), (3, 3), (-4, -4) }

After applying conditions to input set, {(2, 2), (3, 3), (-4, -4)} pairs are removed from input

set. Remaining pairs {(0, -1), (0, 0), (0, 1), (1, -1), (1, 0), (1, 1) }are called feasible solution.

Among the feasible solution at (1,1) the objective function is maximum.

Z=3x1 + 4x1 = 7 So (1, 1) is an optimal solution for the given objective function.

Control Abstraction of Greedy Method

Algorithm greedy(a,n) // a contains n inputs

{

 solution:=0;

 for i:= 1 to n do

{

 x=select(a);

 if feasible (solution, x) then

 {

 solution := Union(solution, x);

 }

 else

 reject();

 }

 return solution;

 }

Dr.DSK III CSE----DAA UNIT-IV THE GREEDY METHOD Page 2

APPLICATIONS
JOB Sequencing with Dead Lines, 0/1 KNAPSAK PROBLEM , MINIMUM COST

SPANNING TREES, SINGLE SOURCE SHORTEST PATH PROBLEM

KNAPSACK PROBLEM
We are given n objects and a knapsack (Bag). Object i has a weight wi and knapsack has a

capacity of m. If a fraction xi such that 0<=xi<=1 of object i is placed into a knapsack, then a

profit of pixi is earned. Since the knapsack capacity is m, we require the total weight of all

chosen objects to be at most m.

Maximize
1

i i

i n

p x
≤ ≤

∑ ----------------------------(1)

Subject to
1

i i

i n

w x m
≤ ≤

≤∑ -----------------------(2)

And 0 1, 1
i

x i n≤ ≤ ≤ ≤ ---------------(3)

We obtain a feasible solution when equations (2) & (3) are satisfied & optimal solution is

obtained when eq(1) is also satisfied.

Algorithm greedyknapsack(m,n)

{

 for i:= 1 to n do

 x[i]:=0;

 u:=m;

 for i:= 1 to n do

 {

 if (w[i] > u) then break;

 x[i]:=1.0;

 u:=u-w[i];

 }

 if (i<=n) then

 x[i]:=u/w[i];

}

Example 1)
 Total number of objects n=3,

 Total capacity m=20,

 Profits of Knapsack (p1,p2,p3)=(25,24,15),

 Weights (w1,w2,w3)=(18,15,10)

Algorithm greedy_knapsack(20,3)

{

 for i:= 1 to 3 do

 x[1]:=x[2]:=x[3]:=0;

 u:=20;

 for i:= 1

 {

 if (w[1] > 20) then break; i.e. 18>20 false

 x[1]:=1.0;

 u:=u-w[i]; u=20-18=2

 }

 for i:= 2

 if (w[2] > 2) then break; i.e. 15>2 true so break

 if (2<=3) then

 x[i]:=u/w[i]; x[2]:=2/15=0.13

}

Total profit = 25*1 +24*0.13 = 28.2

Dr.DSK III CSE----DAA UNIT-IV THE GREEDY METHOD Page 3

To solve the knapsack problem we consider 3 optimization measures:
1) Consider the objects with their profits in descending order.

2) Consider the objects with their weights in ascending order.

3) Consider the objects with their profit/weight ratio in descending order.

Case 1: Try to fill the knapsack by including the object with largest profit. If an object

under consider does not fit, then a faction of it is included to fill the knapsack. Thus each

time an object is included into the knapsack, we obtain largest possible increase in profit

i.e. object1 (p1=25) is placed into the knapsack, and then x1=1 and a profit of 25 is

earned. Then m=20-18=2. i.e. 2 units of space is left in the knapsack. Objet2 has the

second largest profit (p2=24) but w2=15>2 and does not fit into the knapsack. Using

x2=2/15 fills the knapsack exactly with the part of object2. Profit earned is 24*2/15=3.2

Total profit earned is 25+3.2=28.2 .

This method used to obtain the solution is termed as “Greedy method” because at each

step, we choose to introduce that object which will increase the objective function value

the most. However, this did not yield the optimal solution.

1 1 2 2 3 31

n
p x p x p x p xi i

i
= + +∑

=

 = 25*1+24*2/15+15*0

 = 25+3.2+0

 = 28.5

Case 2: Try to be greedy with the capacity & use it up as slowly as possible. This

requires to consider the objects in the order of increasing weights. The object with lowest

weight is object3 (w3=10) is placed into the knapsack first. So, x3=1 and the profit of

15*1=15 is earned. Object 2 has the next highest weight(w2=15). But it does not fit into

the knapsack. Using x2=10/15 fits the knapsack exactly with part of object2 and the profit

earned is 24*10/15=16.

Total profit earned is 15+16=31

1 1 2 2 3 31

n
p x p x p x p xi i

i
= + +∑

=

 = 25*0+24*10/15+15*1

 = 0+16+15

 = 31

Case 3: Consider the object that has max profit/weight ratio used, i.e consider the objects

in the ratio of pi/wi in decreasing order. The first object i.e to be considered is object2

(p2/w2=1.6). So, x2=1 and a profit of 21*1=24 is earned. M= 20-15=5 units of space is

left in the knapsack. The object to be considered next is object3 (p3/w3=1.5) but it does

not fit into the knapsack. So, fraction of object of object3 i.e x3=5/10=05 is inserted into

the knapsack & profit earned is 15*0.5=7.5.

 Total profit earned is 31.5.

p1/w1=1.4 p2/w2=1.6 p3/w3=1.5

descending order of profit/weight ratio p2, p3, p1

1 1 2 2 3 31

n
p x p x p x p xi i

i
= + +∑

=

 = 25*0 + 24*1 + 15*1/2

 = 0 + 24 + 7.5

 = 31.5

Dr.DSK III CSE----DAA UNIT-IV THE GREEDY METHOD Page 4

X1 X2 X3 ∑ wixi ∑ pixi

1 2/15 0 20 28.2

0 2/3 1 20 31

0 1 ½ 20 31.5 Optimal Solution

 The solution for Knapsack problem is obtained when the objects are considered

according to their profits/weights ratio in descending order.

Example 2) Find the optimal solution for given instance of Kanpsack problem

N=7,

M=15,

(p1, p2, p3, p4, p5, p6, p7) = (10, 5, 15, 7, 6, 18, 3)

 (w1,w2,w3,w4,w5,w6,w7) = (2, 3, 5, 7, 1, 4, 1)

Find the optimal solution for

 1) Maximum profit

 2) Minimum weight

 3) Maximum profit per unit weight

Solution:

Case 1) Maximum profit ---- Decreasing order of profits (P6,P3,P1,P4,P5,P2,P7)

 X6=1

 X3=1

 X1=1

 X4=4/7

 ∑pixi = p1x1+p2x2+p3x3+p4x4

 = 18*1+15*1+10*1+7*4/7=47

Case 2) Minimum Weight – Increasing order of weights (w5,w7,w1,w2,w6,,w3,w4)

 X7=1

X5=1

X1=1

X2=1

X6=1

X3=4/5

∑pixi =p1x1+p2x2+p3x3+p5x5+p6x6+p7x7

 =10*1+5*1+15*4/5+6*1+18*1+3*1=54

Case 3) Descending order of profit / weight ratio

 p1/w1 =10/2=5

 P2/w2=5/3=1.6

 P3/w3=15/5=3

P4/w4=7/7=1

P5/w5=6/1=6

P6/w6=18/4=4.5

P7/w7=3/1=3

∑pixi = p5x5+p1x1+p6x6+p3x3+p7x7+p2x2

 = 6*1+10*1+ 18*1 + 15*1 + 3*1+ 5*2/3 = 55.3

Dr.DSK III CSE----DAA UNIT-IV THE GREEDY METHOD Page 5

OPTIMAL STORAGE ON TAPES : There are ‘n’ programs that are to be stored on a

computer tape of length ‘L’. Associated with each program ‘i’ is a length Li, 1<=i<=n.

Clearly, all programs can be stored on the tape if and only if the sum of the lengths of the

programs is at most ‘L’.

We assume that whenever a program is to be retrieved from this tape, the tape is initially

positioned at the front. Hence If the programs are stored in the order I = i1, i2, i3…,in, the

time tj needed to retrieve program ij is proportional to
1

ik

k j

l
≤ ≤

∑ . If all programs are retrieved

equally often, then the expected or mean retrieval time (MRT) is
1

1
j

j n

t
n

≤ ≤

∑ . In the optimal

storage on the tape problem, we are required to find a permutation for the n programs so that

when they are required to find a permutation for the n programs do that when they are stored

on the tape in this order the MRT is minimized. The problem fits the ordering paradigm.

Minimizing the MRT is equivalent to minimizing
1 1

()
ik

j n k j

d I l
≤ ≤ ≤ ≤

= ∑ ∑ .

Example) Let n=3 and (l1,l2,l3)=(5,10,3). There are n! = 6 possible orders. These orderings

and their respective d values are:

Ordering d(I)

1,2,3 5 + (5 + 10) + (5 + 10 + 3) = 38

1,3,2 5 + (5 + 3) + (5 + 3 + 10) = 31

2,1,3 10 + (10 + 5) + (10 + 5 + 3) = 43

2,3,1 10 + (10 + 3)+ (10 + 3 + 5) = 41

3,1,2 3 + (3 + 5) + (3 + 5 + 10) = 29

3,2,1 3 + (3 + 10) + (3 + 10 + 5) = 34

 The optimal ordering is 3,1,2.

A greedy method approach to building the required permutation would choose the next

program on the basis of some optimization measure. One possible measure would be the d

value of the permutation constructed so far.

1 1 1

() (1)
n k n

ij ik

k j k

d I l n k l
= = =

= = − +∑∑ ∑ = (3-1+1)5+(3-2+1)10+(3-3+1)3=15+20+3=38

1 1

()
n k

ij

k j

d I l
= =

=∑∑ = (5)+(5+10)+(5+10+3)=38

Algorithm storageontapes(n,m)

// n number of programs, m number of tapes

{

 j:=0;

 for i:= 1 to n do

 {

 write(“append Program”,i,”to permutation for tape”,j);

 j := (j+1) mod m;

 }

}

Dr.DSK III CSE----DAA UNIT-IV THE GREEDY METHOD Page 6

JOB SEQUENCING WITH DEADLINES

We are given a set of n jobs. Associated with job i is an integer deadline di>=0 and a profit

pi>0. for any job i the profit pi is earned iff the job is completed by its deadline. To complete

a job, one has to process the job on a machine for one unit of time. Only one machine is

available for processing jobs. A feasible solution for this problem is a subset J of jobs such

that each job in this subset can be completed by its deadline. The value of a feasible solution

J is the sum of the profits of the jobs in j, or
i

i J

p
∈

∑ . An optimal solution involves the

identification of a subset, it fits the subset paradigm.

Example 1) Let n =4, (p1,p2,p3,p4)=(100,10,15,27) and (d1,d2,d3,d4)=(2,1,2,1). The

feasible solutions and their values are

S.No Feasible

solution

Processing

sequence

Value

1 (1,2) 2,1 100+10=110

2 (1,3) 1,3 or 3,1 100+15=115

3 (1,4) 4,1 27+100=127

4 (2,3) 2,3 10+15=25

5 (3,4) 4,3 27+15=42

6 (1) 1 100

7 (2) 2 10

8 (3) 3 15

9 (4) 4 27

Solution 3 is optimal. In this solution only jobs 1 and 4 are processed and the value is 127.

These jobs must be processed in the order job 4 followed by job 1. Thus the processing time

of job 4 begins at time zero and that of job1 is completed at time 2.

Example 2) Solve the job sequencing problem given n=5, profits(1,5,20,15,10) and

deadlines(1,2,4,1,3) using greedy method.

Since the maximum deadline is 4 units of time the feasible solution set must have <= 4 jobs.

Now arranging the jobs in the decreasing order of profits

 (P1,P2,P3,P4,P5) = (1,5,20,15,10)

Decreasing Order of profits (P3,P4,P5,P2,P1) = (20,15,10,5,1)

Similarly deadlines (d3,d4,d5,d2,d1) = (4,1,3,2,1)

Feasible solutions and their profits

S.No Feasible

solution

Processing

sequence

Value

1 {3} 3 20

2 {3,4} 4,3 20+15=35

3 {3,4,5} 4,5,3 or 4,3,5 20+15+10=45

4 {3,4,5,2} 4,2,5,3 or 4,2,3,5, 20+15+10+5=50

5 {3,5,2,1} 1,2,5,3 1+5+10+20=36

Solution (4) is an optimal solution. The jobs must be processed in the order 4,2,5,3 or 4,2,3,5

and the value of the optimal solution is 50.

Dr.DSK III CSE----DAA UNIT-IV THE GREEDY METHOD Page 7

Algorithm greedyjobseq(d,j,n)

// d-delay

// j-set of jobs that can be completed by their deadline

//n- number of jobs

{

 j:=1;

 for i:=2 to n do

 {

 if all jobs in jU{i} can be completed by their deadlines then

 j=jU{i}

 }

}

Algorithm job_seq(D,J,N)

{

 D[0]:=0;

 J[0]:=0;

 J[1]:=1;

 count := 1;

 for i:= 2 to n do

 {

 t:=count;

 while (D[J[t]]>D[i]) and (D[J[t]]!=t) do

 t:=t - 1;

 if (D[J[t]]<=D[i]) and (D[i]>t) then

 {

 for s:= count to (t+1) step -1 do

 J[s+1] := J[s];

 J[t+1] := 1;

 count := count +1;

 }

 }

 return count;

}

The computing time taken by above job sequencing algorithm is O(n
2
).

Dr.DSK III CSE----DAA UNIT-IV THE GREEDY METHOD Page 8

Spanning Trees :

A Spanning tree of a graph is any tree that includes every vertex in the graph.

A Spanning tree of a graph G is a sub graph of G that is a tree and contains all the vertices of

G containing no circuit or cycle.

An edge of a spanning tree is called a branch

An edge in the graph that is not in the spanning tree is called a Chord.

It spans the graph, i.e. it includes every vertex of the graph.

It is a minimum cost spanning tree i.e. the total weights of all the edges is as low as possible.

Example 1) An Undirected graph and three of its spanning trees

If a graph consist of n vertices then the possible spanning trees are n
n-2

, for above example

n=3, i.e 3
3-2

=3 spanning trees.

Example 2) Number of vertices =4

 Number of spanning trees= 4
(4-2)

= 4
2

= 16

Dr.DSK III CSE----DAA UNIT-IV THE GREEDY METHOD Page 9

MINIMUM-COST SPANNING TREES
Let G=(V,E) be an undirected connected graph. A sub graph t=(V,E’) of G is a spanning tree

of G iff t is a tree.

 Figure 2) A graph and its minimum cost spanning tree

Applications of Spanning Trees:
1) They can be used to obtain an independent set of circuit equations for an electric network.

2) Using the property of spanning trees that a spanning tree is a minimum su graph G’ of G

such that V(G’)=V(G) and G’ is connected. If the nodes of G represent cities, edges of G

represent possible communication links connecting the 2 cities, then minimum no of links

needed to connect ‘n’ cities is (n-1) .

Given a weighted graph in which edges have weights assigned to them where weights

represent cost of construction, length of link,… One need to have min total cost or minimum

total length. In either case the links selected have to form a tree. If this is not so, then the

selection of links contain a cycle.

The identification of min cost spanning tree involves the selection of subset of edges.

The two algorithms used to obtain minimum cost spanning trees from a given graph are

1) Prim’s Algorithm

2) Kruskal’s Algorithm

Dr.DSK III CSE----DAA UNIT-IV THE GREEDY METHOD Page 10

PRIM’S ALGORITHM
Algorithm prim(E, cost, n, t)

{

 let (k,l) be an edge of minimum cost in E;

 mincost := cost[k, l];

 t[1,1]:=k;

 t[1,2]:=1;

 for i:=1 to n do

 if (cost[i,l]<cost[i,k]) then near[i]:=l;

 else near[i]:=k;

 near[k]:=near[l]:=0;

 for i:= 2 to n-1 do

 {

 Let j be an index such that near[j] != 0 and cost[j, near[j]] is minimum

 t[I,1]:=j;

 t[I,2]:=near[j];

 mincost := mincost + cost[j,near[j]];

 near[j] := 0;

 for k:= 1 to n do

 if (near[k]!= 0) and (cost[k,near[k]]>cost[k,j]) then

 near[k]:=j;

 }

 return mincost;

}

This is a greedy method to obtain a minimum cost spanning tree which builds the tree edge

by edge. The next edge to be included is chosen according to a criteria i.e. choose an edge

that results in minimum increase in sum of edges cost so far included.

The algorithm will start with a tree that includes only the min cost edge of ‘G’, then edges are

added to this tree one by one. The next edge (i, j) to be added is such that ‘i’ a vertex already

included in the tree & ‘j’ is a vertex not yet included, in the tree & cost (i, j) is minimum.

Among all edges (i, j) efficiently,. We associate with each vertex j, a value near[j] which is a

vertex in the tree such that cost [j, near[j]] is min. among all choices for next near[j]. We

define near[j]=0 for all vertices j that are already in the tree. The next edge to be included is

defined by vertex ‘j’ such that near[j]!=0 and cost[j, near[j]] is minimum.

The Time Complexity of Prim’s algorithm is O(n
2
). The algorithm spends most of the time in

finding the smallest edge. So time of the algorithm basically depends on how do we search

this edge. Therefore Prim’s algorithm runs in O(n
2
) time.

Dr.DSK III CSE----DAA UNIT-IV THE GREEDY METHOD Page 11

 Figure 3) Stages in Prim’s algorithm

Dr.DSK III CSE----DAA UNIT-IV THE GREEDY METHOD Page 12

Tracing of the Prim’s algorithm

Minimum cost edge(k,l) = (1,6) i.e. mincost=10 select (1,6)

t[1,1] = k = 1

t[1,2] = l = 6

for i=1

 if cost[i,l]<cost[i,k] then near[i]=l else near[i]=k

 cost[1,6]<cost[1,1] ?

 10<0 ? no so near[i]=k i.e. near[1]=1

for i=2

 cost[2,6]<cost[2,1] ?

 α < 28 ? no so near[i]=k i.e. near[2]=1

for i=3

 cost[3,6]<cost[3,1] ?

 α < α ? no so near[i]=k i.e. near[3]=1

for i=4

 cost[4,6]<cost[4,1] ?

 α < α ? no so near[i]=k i.e. near[4]=1

for i=5

 cost[5,6]<cost[5,1] ?

 25 < α ? yes so near[i]=l i.e. near[5]=6

for i=6

 cost[6,6]<cost[6,1] ?

 0 < 10 ? yes so near[i]=l i.e. near[6]=6

for i=7

 cost[7,6]<cost[7,1] ?

 α < α ? no so near[i]=k i.e. near[7]=1

near[1]=0

near[6]=0 since edge(1,6) is included in the tree

Cost Matrix

 1 2 3 4 5 6 7

1 0 28 α α α 10 α

2 28 0 16 α α α 14

3 α 16 0 12 α α α

4 α α 12 0 22 α 18

5 α α α 22 0 25 24

6 10 α α α 25 0 α

7 α 14 α 18 24 α 0

Dr.DSK III CSE----DAA UNIT-IV THE GREEDY METHOD Page 13

i = 2
j 1 2 3 4 5 6 7

near[j] 0 1 1 1 6 0 1

cost[j, near[j] - 28 α α 25 -- α

we select j=5 since cost[j,near[j] i.e. cost [5,6]=25 is minimum

 edge(5,6) is included

near[j]!=0

 t[2,1]=5

 t[2,2]=6

mincost = mincost + cost[j,near[j]]

 = 10 + 25 = 35

near[5]=0

k 1 2 3 4 5 6 7

near[k] 0 1 1 1 0 0 1

cost[k, near[k] -- 28 α α -- -- α

for all k where near[k]!=0 && (cost[k,near[k]]>cost[k,j])

j=5

k=2 near[k]!=0 && cost[2,1]>cost[2,5] ?

 28>α ? no

k=3 near[k]!=0 && cost[3,1]>cost[3,5] ?

 α > α ? no

k=4 near[k]!=0 && cost[4,1]>cost[4,5] ?

 α > 22 ? yes so near[k]=j i.e. near[4]=5

k=7 near[k]!=0 && cost[7,1]>cost[7,5] ?

 α > 24 ? yes so near[7]=j i.e. near[7]=5

i = 3
J 1 2 3 4 5 6 7

near[j] 0 1 1 5 0 0 5

cost[j, near[j] -- 28 α 22 -- -- 24

 we select j=4 since cost[j,near[j]] i.e cost[4,5] = 22 is minimum edge(4,5) is included

 j=4

 t[3,1] = 4

 t[3,2] = 5

 mincost = mincost + cost[j,near[j]]

 = 35+22 = 57

 near[4]=0

K 1 2 3 4 5 6 7

near[k] 0 1 1 0 0 0 5

cost[k, near[k] -- 28 α -- -- -- 24

Dr.DSK III CSE----DAA UNIT-IV THE GREEDY METHOD Page 14

For all k where near[k]!=0 && (cost[k,near[k]>cost[k,j])

K=2

 near[k]!=0 && cost[2,1] > cost[2,4] ?

 28 > α ? no

K=3

 near[k]!=0 && cost[3,1] > cost[3,4] ?

 α >12 ? yes

 near[k]=j i.e. near[3]=4

K=7

 near[k]!=0 && cost[7,5] > cost[7,4] ?

 24 > 18 ? yes

 near[k]=j i.e. near[7]=4

i = 4
J 1 2 3 4 5 6 7

near[j] 0 1 4 0 0 0 4

cost[j, near[j] -- 28 12 -- -- -- 18

we select j=3 since cost[j,near[j]]

 i.e. cost[3,4]=12 is minimum

 edge(3,4) is included

 j=3

 t[4,1] = 3

 t[4,2] = 4

 mincost=mincost+cost[j,near[j]]

 =57+12= 69

 near[3]=0

K 1 2 3 4 5 6 7

near[k] 0 1 0 0 0 0 4

cost[k, near[k] -- 28 -- -- -- -- 18

For all k where near[k]!=0 && (cost[k,near[k]>cost[k,j])

 j=3

K=2

 near[k]!=0 && cost[2,1] > cost[2,3] ?

 28 > 16 ? yes

 Near[k]=j i.e near[2]=3

K=7

 near[k]!=0 && cost[7,4] > cost[7,3] ?

 18 > α ? no

Dr.DSK III CSE----DAA UNIT-IV THE GREEDY METHOD Page 15

i = 5
j 1 2 3 4 5 6 7

near[j] 0 3 0 0 0 0 4

cost[j, near[j] -- 16 -- -- -- -- 18

we select j=2 since cost[j,near[j]]

 i.e. cost[2,3]=16 is minimum

 edge(2,3) is included

 j=2

 t[5,1] = 2

 t[5,2] = 3

 mincost=mincost+cost[j,near[j]]

 =69+16= 85

 near[2]=0

K 1 2 3 4 5 6 7

near[k] 0 0 0 0 0 0 4

cost[k, near[k] -- -- -- -- -- -- 18

For all k where near[k]!=0 && (cost[k,near[k]>cost[k,j])

 j=2

K=7

 near[k]!=0 && cost[7,4] > cost[7,2] ?

 18 > 14 ? yes

 Near[k]=j i.e. near[7]=2

i = 6
j 1 2 3 4 5 6 7

near[j] 0 3 0 0 0 0 2

cost[j, near[j] -- -- -- -- -- -- 14

we select j=7 since cost[j,near[j]]

 i.e. cost[7,2]=14 is minimum

 edge(7,2) is included

 j=7

 t[6,1] = 7

 t[6,2] = 4

 mincost=mincost+cost[j,near[j]]

 =85+14= 99

 near[7] = 0

K 1 2 3 4 5 6 7

near[k] 0 0 0 0 0 0 0

cost[k, near[k] -- -- -- -- -- -- --

i reaches n-1 i.e. (7-1=6) the algorithm terminates and returns mincost as 99 and the edges

of MST are stored in array t.

Dr.DSK III CSE----DAA UNIT-IV THE GREEDY METHOD Page 16

1

2

3 4

5

6

7

8

55

5

25

40

35
10

50

30

45

20

15

Ex 2) Minimal spanning tree using Prim’s algorithm

Total weight = 5+ 15 + 10 + 20 + 30 + 40 + 25 = 145

Dr.DSK III CSE----DAA UNIT-IV THE GREEDY METHOD Page 17

KRUSKAL’S ALGORITHM

The set t(edges) is initially empty. As the algorithm progresses, edges are added to ‘t’. When

‘t’ is initially empty, each node of G forms a distinct trivial connected component. As long as

no solution is found, partial graph formed by the nodes and edges in the ‘t’ consists of several

connected components. The elements of t included in a given connected component form a

minimum spanning tree for the nodes in this component. At the end of the algorithm only one

connected component remains. So, t is then a minimum spanning tree for all nodes of G. To

build bigger and bigger connected components, we examine the edges of G in the order of

increasing length. If an edge joins 2 nodes in different connected components, we add it to t.

Consequently, the 2 connected components now form a simple one. Otherwise the edge is

rejected.

To construct a minimal spanning tree, we use the following procedure.

1) Arrange all edges in the increasing order of weight

2) Select an edge with minimum weight. This is the first edge of spanning tree T to be

constructed.

3) Select the next edge with minimum weight that do not form a cycle with the edges

already included in T.

4) Continue step 3 until T contains (n-1 edges, where n is the number of vertices of G.

Arranging the edges in increasing order of their weights.

Edge Cost

{1,6} 10

{3,4} 12

{2,7} 14

{2,3} 16

{7,4} 18

{5,4} 22

{7,5} 24

{6,5} 25

{1,2} 28

Dr.DSK III CSE----DAA UNIT-IV THE GREEDY METHOD Page 18

 Figure 4) Stages in Kruskal’s algorithm

Algorithm Kruskal(E,cost,n,t)

{

 Construct a heap out of the edge costs using Heapify;

 for i:= 1 to n do

 parent[i]:= -1;

 i:=0;

 mincost := 0.0;

 while ((i<n-1) and heap not empty)) do

 {

 delete a minimumcost edge (u,v) from heap;

 and reheapify using Adjust;

 j:=find(u);

 k:=find(v);

 if (j!=k) then

 {

 i:=i+1;

 t[i,1]:=u;

 t[i,2]:=v;

 mincost := mincost+cost[u,v];

 union(j,k);

 }

 }

 if (i!= n-1) then

 write (“no spanning tree”);

 else

 return mincost;

}

The computing time of Kruskal’s algorithm is O(E log n).

Where E is the number of edges.

Dr.DSK III CSE----DAA UNIT-IV THE GREEDY METHOD Page 19

Tracing of the Kruskal’s algorithm for MST
Edge Cost

{1,6} 10

{3,4} 12

{2,7} 14

{2,3} 16

{7,4} 18

{5,4} 22

{7,5} 24

{6,5} 25

{1,2} 28

 Initialization of all vertices as roots

parent -1 -1 -1 -1 -1 -1 -1

vertex 1 2 3 4 5 6 7

i=0

mincost=0

(u,v)=(1,6) with a cost of 10

j=find(1) = 1

k=find(6) = 6

as j!=k include the edge in the spanning tree

i=1

t[1,1]=1

t[1,2]=6

mincost=0+10=10

union(1,6)

parent -1 -1 -1 -1 -1 1 -1

vertex 1 2 3 4 5 6 7

i=1

mincost=10

(u,v)=(3,4) with a cost of 12

j=find(3) = 3

k=find(4) = 4

as j!=k include the edge in the spanning tree

i=2

t[2,1]=3

t[2,2]=4

mincost=10+12=22

union(3,4)

parent -1 -1 -1 3 -1 1 -1

vertex 1 2 3 4 5 6 7

Tree matrix

t

1 6

3 4

Tree matrix

t

1 6

Dr.DSK III CSE----DAA UNIT-IV THE GREEDY METHOD Page 20

i=2

mincost=22

(u,v)=(2,7) with a cost of 14

j=find(2) = 2

k=find(7) = 7

as j!=k include the edge in the spanning tree

i=3

t[3,1]=2

t[3,2]=7

mincost=22+14=36

union(2,7)

parent -1 -1 -1 3 -1 1 2

vertex 1 2 3 4 5 6 7

i=3

mincost=36

(u,v)=(2,3) with a cost of 16

j=find(2) = 2

k=find(3) = 3

as j!=k include the edge in the spanning tree

i=4

t[4,1]=2

t[4,2]=3

mincost=36+16=52

union(2,3)

parent -1 -1 2 2 -1 1 2

vertex 1 2 3 4 5 6 7

i=4

mincost=54

(u,v)=(7,4) with a cost of 18

j=find(7) = 2

k=find(4) = 2

as j=k inclusion of this edge (7,4) forms a cycle in the MST so we discard this edge

parent -1 -1 2 3 -1 1 2

vertex 1 2 3 4 5 6 7

Tree matrix

t

1 6

3 4

2 7

Tree matrix

t

1 6

3 4

2 7

2 3

Dr.DSK III CSE----DAA UNIT-IV THE GREEDY METHOD Page 21

i=5

mincost=54

(u,v)=(5,4) with a cost of 22

j=find(5) = 5

k=find(4) = 3

as j!=k include the edge in the spanning tree

i=5

t[5,1]=5

t[5,2]=4

mincost=52+22=74

union(5,4)

parent -1 -1 2 3 4 1 2

vertex 1 2 3 4 5 6 7

i=5

mincost=74

(u,v)=(7,5) with a cost of 24

j=find(7) = 2

k=find(5) = 2

as j=k inclusion of this edge forms a cycle discard this edge

parent -1 -1 2 3 4 1 2

vertex 1 2 3 4 5 6 7

i=5

mincost=74

(u,v)=(6,5) with a cost of 25

j=find(6) = 1

k=find(5) = 2

as j!=k include the edge in the spanning tree

i=6

t[6,1]=6

t[6,2]=5

mincost=74+25=99

union(6,5)

parent 6 -1 2 3 4 5 2

vertex 1 2 3 4 5 6 7

The minimum cost spanning tree is with 99

Tree matrix

t

1 6

3 4

2 7

2 3

5 4

6 5

Tree matrix

t

1 6

3 4

2 7

2 3

5 4

Dr.DSK III CSE----DAA UNIT-IV THE GREEDY METHOD Page 22

Kruskal’s Algorithm

Dr.DSK III CSE----DAA UNIT-IV THE GREEDY METHOD Page 23

SINGLE SOURCE SHORTEST PATH PROBLEM

Let G=(V,E) be a directed graph with weighting function w for the edges of G. The starting

vertex of the path is called the source and the last vertex is called the destination. Let v be any

other vertex which belongs to set of vertices V. The problem to determine a shortest path to

given destination vertex v from source is called single source shortest path problem.

Dijkstra’s Algorithm
Algorithm shortestpath(v,cost,dist,n)

// dist[i], 1<=i<=n is the distance or short path starting from source passing through the

// vertices that are in S and ending at i

{

 for i:= 1 to n do

 {

 S[i]:=0; //1 for true ; 0 for false

 dist[i]:= cost[v,i];

 }

 S[v]:=1; //1 for true 0 for false

 dist[v]:=0;

 for k:= 2 to n-1 do

 {

 choose u from among those vertices not in S such that dist[u] is minimum;

 S[u]:=1; // put u in S.

 for (each w adjacent to u with s[w] =0) do

 {

 if (dist[w] > dist[u]+ cost[u,w]) then

 dist[w]:=dist[u]+cost[u,w];

 }

 }

}

Example 1) Find shortest path from node 1 to all other nodes

If 1 is the source vertex, the shortest path from 1 to 5 is 6. The shortest path from 1 to all

other vertices are given in the table.

The greedy method to generate shortest paths from source vertex to the remaining vertices is

to generate these paths in increasing order of path length.

Path length

1,2 4

1,3 2

1,3,4 3

1,3,4,5 6

Dr.DSK III CSE----DAA UNIT-IV THE GREEDY METHOD Page 24

According to Dijkstra’s algorithm, first we select a source vertex and include that vertex in

the set S. To generate the shortest paths from source to the remaining vertices a shortest path

to the nearest vertex is generated first and it is included in S. Then a shortest path to the

second nearest vertex is generated and so on. To generate these shortest paths we need to

determine,

1) The next vertex to which a shortest path must be generated.

2) A shortest path to this vertex.

The first for loop takes O(n) time. Each executin of second for loop requires O(n) time to

select the next vertex and again at the for loop to update dist. So that total time for this loop is

O(n
2
). Therefore time complexity for this algorithm is O(n

2
).

interaction set Vertex

selected

Distance

1 2 3 4 5

initial -- -- 0 4 2 ∞ 8

1 {1} 3 0 4 2 3 8

2 {1,3} 4 0 4 2 3 6

3 {1,3,4} 2 0 4 2 3 6

4 {1,3,4,2} 5

Tracing the Algorithm

S[1]=0,S[2]=0,S[3]=0,S[4]=0,S[5]=0

dist[1]=cost[1,1]=0

dist[2]=cost[1,2]=4

dist[3]=cost[1,3]=2

dist[4]=cost[1,4]=∞

dist[5]=cost[1,5]=8

Initially set S is empty. i.e. S={}

as we want to found shortest distance for node 1 to all other nodes the source node i.e node 1

is included in the set S

S={1}

We search for the nearest node from 1 which is node 3.

Node 3 is included in the set i.e. S={1,3}

Now find all adjacent vertices of node 3 other than in set S..

Node 4 is adjacent of node 3

 if (dist[4] > dist[3]+ cost[3,4]) then

 dist[4]:=dist[3]+cost[3,4];

the nearest node is selected and added to S.

S={1,3,4}

Usually this is repeated for all the adjacent vertices other than the nodes in S.

Now find all adjacent nodes of 4 other than the nodes in S.

Node 5 is adjacent

The dis[5] is modified

The node with smallest dist is selected.

Node 2 is selected and added to S

S={1,3,4,2}

The remaining node is 5

S={1,3,4,2,5}

The paths from 1 to all other nodes is shown in the spanning tree.

Dr.DSK III CSE----DAA UNIT-IV THE GREEDY METHOD Page 25

Path Length

1,4 10

1,4,5 25

1,4,5,2 45

1,3 45

Example 2) Single source shortest path problem: Find shortest path from node 1 to all other

nodes.

Consider the above directed graph. The numbers on the edges are weights. If

node 1 is the source vertex, then the shortest path from 1 to 2 is 1-4-5-2. The length of

this path is 10 + 15 + 20 = 45. Even though there are three edges on this path it is

shorter than the path 1,2 which is of length 50. There is no path from 1 to 6.

To formulate greedy based algorithm to generate shortest paths, we must

conceive of a multi stage solution to the problem and also of an optimization measure.

One possibility is to build the shortest paths one by one. As an optimization measure

we can use the sum of the lengths of all paths so far generated.

The algorithm known as Dijkstra’s algorithm determines the lengths of the

shortest paths from V0 to all other vertices in G. it is assumed that the n vertices are

numbered from 1 through n. The set S is maintained as a bit array with S[i]=0 if

vertex I is not in S and S[i]=1 if it is.

It is assumed that the graph itself is represented by its cost adjacency matrix

with cost[I,j] being the weight of the edge <i,j>. The weight cost[i,j] is set to some

large number, ∞, in case the edge <i,j> is not in E(G). For i=j cost[i,j] can be set to

nonnegative number without affecting the outcome of the algorithm.

The time taken by the algorithm on a graph with n vertices is O(n
2
).

interaction set Vertex

selected

Distance

1 2 3 4 5 6

initial -- -- 0 50 45 10 ∞ ∞

1 {1} 4 0 50 45 10 25 ∞

2 {1,4} 5 0 45 45 10 25 ∞

3 {1,4,5} 2 0 45 45 10 25 ∞

4 {1,4,5,2} 3 0 45 45 10 25 ∞

Shortest paths from 1 in increasing order

1-4=10

1-5=1-4-5=25

1-2=1-4-5-2=45

1-3=45

Dr.DSK III CSE----DAA UNIT-IV THE GREEDY METHOD Page 26

Spanning tree which shows shortest paths from node 1

In Divide and Conquer approach, a problem is divided recursively into sub problems of same

kind as the original problem, until they are small enough to be solved and finally the

solutions of the sub problems are combined to get the solution of the original problem. In

Greedy approach, a problem is solved by determining a subset to satisfy some constraints. If

that subset satisfies the given constraints, then it is called as feasible solution, which

maximizes or minimizes a given objective function. A feasible solution that either

maximizes or minimizes an objective function is called as optimal solution.

Single Source Shortest Path Problem

There are many paths from A to H.

For example length of path A F D E H = 1 + 3 + 4 + 6 = 14

 A B C E H = 2 + 2 + 3 + 6 = 13

We may further look for a path with length shorter than 13 if exists.

Algorithm:
1. We start with source vertex A.

2. We locate the vertex closest to it. B F are adjacent vertices. Length

of AF < length of AB so we choose F.

3. Now we look for all the adjacent vertices excluding the just earlier

vertex of newly added vertex and the remaining adjacent vertices of earlier vertices, i.e.,

we have D,E and G (as adjacent vertices of F) and B (as remaining adjacent vertex of A).

Vertices that may be attached Path from A Length

D AFD 4

E AFE 4

G AFG 6

B AB 2

 We choose vertex B.

Dr.DSK III CSE----DAA UNIT-IV THE GREEDY METHOD Page 27

4) We go back to step 3 and continue till we exhaust all the vertices.

Vertices that may be attached Path from A Length

D
ABD

AFD

4

4

G AFG 6

C ABC 4

E ABE 6

B AFE 4

We may choose D, C or E.

We choose say D through B.

Vertices that may be

attached

Path from A Length

G AFG 6

C ABC 4

E

AFE

ABE

BDE

4

6

8

We may choose C or E, choose C.

Vertices that may be attached Path from A Length

G AFG 6

E

AFE

ABE

ABDE

ABCE

4

6

8

7

H ABCH 5

 We choose E via AFE.

Vertices that may be attached Path from A Length

G
AFG

AFEG

6

11

H
ABCH

AFEH

5

10

We choose H via ABCH.

Vertices that may be attached Path from A Length

 G

AFG

AFEG

6

11

We choose path AFG.

Therefore the shortest paths from source vertex A to all the other vertices are

 AB

 ABC

 ABD

 ABCH

 AF

 AFE

 AFG.

Dr.DSK III CSE----DAA UNIT-IV THE GREEDY METHOD Page 28

S.No Divide & Conquer Method Greedy Method

1 Divide and conquer approach is a result

oriented approach

By Greedy method, there are some

chances of getting an optimal solution to

a specific problem

2 The time taken by this algorithm is efficient

when compared by greedy method.

The time taken by this algorithm is not

that much efficient when compared to

divide-and-conquer approach.

3 This approach does not depend on

constraints to solve a specific problem

This approach cannot make further

move, if the subset chosen does not

satisfy the specified constraints.

4 This approach is not efficient for larger

problems

This approach is applicable and as well

as efficient for a wide variety of

problems.

5 As the problem is divided into large

number of sub problems, the space

requirement is very much large

Space requirement is less when

compared to the divide-and –conquer

approach.

6 This approach is not applicable to problems

which are not divisible. Example Knapsack

problem

This problem (Knapsack) is rectified in

the greedy method.

 Example) Prove that any weighted connected graph with distinct weights has exactly one

minimum spanning tree.

We may get so many spanning trees if weights are equal. If the weights of the connected

graph are all distinct, then the minimum spanning tree is unique.

POSSIBLE QUESTIONS
1) Differentiate between Divide and Conquer and Greedy method

2) What is spanning tree? Explain the Prim’s algorithm with an example.

3) Differentiate between Prim’s and Kruskal’s algorithms

4) Write Prim’s algorithm and also analyze its Time Complexity

5) Write Greedy algorithm to generate shortest path

6) Write dijkstra’s algorithm

